これは WIDE Project ¹における DV over IP の技術を用いて、DV 映像を Ethernet 経由で 転送した実験の報告書である。

下記の構成でシステムを構築構築した。

マシン	: FLOLA 370 (第 4 演習室マシン)
0 S	: FreeBSD 4.3R + firewire-freebsd-4.3-20010910
CPU	: PentiumII 350MHz
メモリ	: 96MB
拡張ボード	: IEEE1394 ボード (Melco IFC-IL3)
	NIC(Intel Express 10/100 BaseT)

マシン構築手順

1) ハードウェアの装着

コンピュータに NIC、IEEE1394 ボードを装着する。

- OS のインストール
 インストールオプションは X-User を選択し、カーネルを再構築するためにカーネルソースもインストールする。
- 3)カーネルソースにパッチ²を当てる

cd /usr/src/sys

patch -p0 < firewire-freebsd-4.3-20010910

4)カーネルソースを再コンパイルする。

config firewire

depend

cd ../../compile/firewire

make

make install

5) デバイスノードを作成する。

mknod /dev/dv0 c 201 2

6) 再起動してデバイスが認識しているか確認する

ifconfig –a

ohci0: flags=8842

```
<BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
```

```
7) DVTS のソース<sup>2</sup>を展開しコンパイルする。
```

gunzip –dc dvts-0.9a19.tar.gz | tar xvf –

- cd dvts-0.9a19
- ./configure

make

make install

8) DV 機器を接続し、プログラムを実行する。 送信側:dvsend 受信側:dvrecv

dvsend, dvrecv のオプションは下記の通り

dvsend <options>

- V	: show version number
-6	: use IPv6 (Default)
-4	: use IPv4
-h hostname	: sendto host "hostname"
-f rate	: send full frame by 1/rate
-I 1394if	: use interface "1394if"
	example, [-I ohci0]
-M if	: use "if" for sending multicast packets
-t ttl	: TTL for multicast
-P port	: use UDP port "port"
-s number	: number of DIF blocks included in one packet
	packet length will be [IPhdr+UDPhdr+RTPhdr+80*number]
-N	: do NOT send video
-d port	: send audio and video in different stream
	send audio usind port "port"
-L	: show packet loss state of the receivers
-H	: show this help message

dvrecv <options>

-V	: show version number
-6	: use IPv6 (Default)
-4	: use IPv4
-j group	: join mulitcast group "group"
	example, [-j 239.100.100.100]
-M ifname	: multicast join interface "ifname"
	example, [-M fxp0]
-P port	: RTP port number "port"
	example, [-P 8100]
-D dev	: use device "dev"
	example, [-D /dev/dv0]
-L	: show packet loss
-R	: don't use RTCP
-l number	: show packet loss, specify display granularity
-H	: show this help message

実験環境

機器を下記(図1)の様に接続にした。

Computer A、Computer B ともハードウェア構成は同じであるが、便宜上 Computer A を 送信側、Computer B を受信側とし、Control Computer を用いてコンピュータ A, B を Telnet で遠隔制御した。また、フレームレートと帯域幅の関係は表 1 に示す。

フレームレート(fps)	帯域幅(Mbps)
1/1	30.47
1/2	15.72
1/3	11.48
1/4	9.01
1/5	7.54
1/10	4.74
1/20	3.26
1/30	2.79

表1:フレームレートと帯域幅の関係

実験および実験結果

10BaseT および 100BaseT の HUB を用いて通信した場合の映像、音声、端末制御の可否を それぞれ表1、表2として示す。表中の は正常な結果、 は一部乱れがあったが誤差範囲な 状態、 は一部乱れがあり気になる程度、×は実用不可として表示した。

フレームレート	映像	音声	端末制御
1/1	×	×	×
1/2	×	×	×
1/3			×
1/4			
1/5			
1/10			

表2:10BaseT HUBを用いた場合の結果

表3:100BaseT HUBを用いた場合の結果

フレームレート	映像	音声	端末制御
1/1			
1/2			
1/3			
1/4			
1/5			
1/10			

考察

今回、コンピュータを接続するために10BaseTと100BaseTの2種類のHUBを使って比較し てみた。100BaseTの場合はどのフレームレートでも良好な結果が得られたが、10BaseTの場 合において1/3以上のフレームレートでは正常に映像・音声が受信できず、また、送受信端末を 制御できないことが多々あった。よって、10BaseTの機器を仲介させる場合に、映像・音声に 乱れ無く送受信するには、フレームレートを1/5以下にする必要があると思われる。

今後の課題

今回は、送信のために1台、受信のために1台と言う環境で実験を行ったが、1台のコンピ ュータで送受信することが出来るかを検証する必要がある。また、各フレームレートでどれだ けの品質で妥協できるかと言うのは個人差があるが、どのくらいのフレームレートで一般的に 使えるか詳しく確かめる必要がある。

¹ http://www.wide.ad.jp/

² http://www.sfc.wide.ad.jp/DVTS/software/